AN OVERVIEW OF NVIDIA'S AUTONOMOUS VEHICLES PLATFORM

Pradeep Kumar Gupta | August 2017

Global Head - Solutions Architecture and Engineering-Autonomous Driving

NVIDIA.

AGENDA

Autonomous Vehicles Functional Safety Levels of Automation DRIVE PX Platform Development Workflow

NVIDIA

Founded in 1993 – 11,000 Employees

Invented the GPU

Invented GPU-accelerated Computing

#1 PC Gaming

#1 Pro Graphics

#1 Accelerated Computing

#1 AI Computing

Fastest Supercomputers in Japan, U.S., Europe

Pioneering AI Car Computer

Nintendo Switch

AUTONOMOUS VEHICLE

AI REVOLUTIONIZING TRANSPORTATION

280B Miles per year

800M parking spots for 250M cars in the U.S.

Domino's: 1M Pizzas delivered per Day

COLLISIONS

CRITICAL REASON ATTRIBUTED TO	ESTIMATED				ESTIMATED (Based on 94% of the NMVCCS Crashes)	
	NUMBER	PERCENTAGE* ±95% CONF. LIMITS		CRITICAL REASON	NUMBER	PERCENTAGE* ±95% CONF. LIMIT
Drivers	2,046,000	94% ±2.2%		Recognition Error	845,000	41% ±2.2%
Vehicles	44,000	2% ±0.7%		Decision Error	684,000	33% ±3.7%
En de se se se t	52,000	20/ 4 20/		Performance Error	210,000	11% ±2.7%
Environment	52,000	2% ±1.3%		Non-Performance Error (sleep, etc.)	145,000	7% ±1.0%
Unknown Critical Reasons	47,000	2% ±1.4%	Other	162,000	8% ±1.9%	
Total	2,189,000	100%		Total	2,046,000	100%

* Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005-2007)

* Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005-2007)

-ς

MOTOR VEHICLE FATALITY ESTIMATES

Number of deaths in thousands per year

FUNCTIONAL SAFETY

"Part of overall safety relating to the equipment under control and the control system that depends on the correct functioning of the electrical, electronic, and programmable electronic safety-related systems and other risk reduction measures" -IEC 61508-4:2010; 3.1.12

"Absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical/electronic systems" -ISO 26262-1:2011; 1.51

FUNCTIONAL SAFETY

Automotive Safety Integrity Level (ASIL)

10 📀 nvidia

FUNCTIONAL SAFETY ASIL Standard

ASILs identified by Standard - ASIL A, ASIL B, ASIL C, ASIL D.

ASIL D dictates the highest integrity requirements on the product and ASIL A the lowest.

ASIL's are 3D with 3 variables: severity, probability of exposure, and controllability.

ISO 26262-3, section 7 "Hazard analysis and risk assessment" provides tables that break these three variables down into classes.

Probability of exposure has five classes: "Incredible" to "High probability" (E0-E4).

Severity has four classes: "No injuries" to "Life-threatening injuries (survival uncertain), fatal injuries" (S0-S3).

FUNCTIONAL SAFETY ASIL Standard

Controllability, which means controllability by the driver, not by the vehicle electronic systems, has four classes: "Controllable in general" to "Difficult to control or uncontrollable."

http://www.electronicdesign.com/embedded/understanding-iso-26262-asils

http://www.eetimes.com/document.asp?doc_id=1331459&page_number=4

Why ASIL D now?

If your car meets the ISO 26262 specification for ASIL D, it means that the machine [car] is "making a decision for you" when it comes across a safety-critical path, explained Raucher. At ASIL B, the car would warn a driver of imminent danger, but at ASIL D, the car — faced with a hazard — brakes and stops or pulls into a safe space."

LEVELS OF AUTOMATION

150M AUTONOMOUS VEHICLES BY 2025

NVIDIA AND DEEP LEARNING

At the Center of AV Revolution

Artificial Intelligence

DEEP LEARNING AUTOMOTIVE PARTNERS

AUTONOMOUS VEHICLES

Key summary points

It is quite clear that putting Autonomous Vehicles on the road is possible only with Artificial Intelligence. AV = AI.

The key challenge with Autonomous Vehicles is that we need an AI super computer in the car.

And, we brought the DRIVE Computer to address the challenge of Autonomous Vehicles

DRIVE PX 2 COMPUTE COMPLEXES

2 Complete AI Systems

Pascal Discrete GPU 1,280 CUDA Cores 4 GB GDDR5 RAM

Parker SOC Complex 256 CUDA Cores 4 Cortex A57 Cores 2 NVIDIA Denver2 Cores 8 GB LPDDR4 RAM 64 GB Flash

Safety Microprocessor

AURIX Safety Microprocessor

IS IT THAT SIMPLE?

NVIDIA DRIVE - SOFTWARE

DRIVE PLATFORM

DRIVEWORKS

DESIGN PHILOSOPHY

Modular

Scalable

Optimized for GPU

Rapid prototyping & production

GETTING STARTED...

Workflow

DIFFERENT WORKFLOWS

HOW MUCH DATA?

TARGETED DATA COLLECTION

Use Cases

Learning to drive

Lane keeping, emergency braking, intersections

Perceiving your surroundings

Detect lane boundaries, drivable paths, cars, pedestrians

Summarizing your world-view to support others

Provide my understanding of this location to other vehicles Updating the "base map"

INTERFACES

70 Gigabits per second of I/O

Sensor fusion interfaces:

GMSL camera, CAN, GbE, BroadR-Reach, FlexRay, LIN, GPIO

Displays interfaces HDMI, FPDlink III and GMSL

Storage interfaces 10GbE, USB3

DRIVE PX 2 HARDWARE CONNECTIVITY

DISTRIBUTED RECORDING

DriveWorks Tools

Multiple sensors; multiple DRIVE PX devices log synchronized data

Each DRIVE PX unit collecting data with a timestamp recording time (ms)

Data between units sync'd based on timestamps

RECORDING TOOL DriveWorks Tools

CAMERA CALIBRATION & SENSOR REPLAY

DriveWorks Tools

CALIBRATION & SENSOR REGISTRATION 99994 5586888 5586888 NII SANG NII SANG 88838882 Gegeere BESEARD agagar

Calibrate N cameras Cameras can be pinhole or fisheve

on No manual s measurements involved

Replays the sensor data captured

timestamp(us):2671573375 replayer master cloc

Displays the data for each sensor type

2671573438 can #messages:24 last message: [0x6b] -> 0x22 0x0 0x32 0x0 0xe9 0x3

DATA REPLAY TOOL

Provides a simple UI for quick sanity checks

DRIVEWORKS MODULES

Sensing	Image Processing	Maps	Renderer
			Image Pipeline
Multi-Camera	Rectifier Color Correction	Map Birds-Eye View	Vehicle IO*
	Computer Vision	Detection	Egomotion
Lidar	SfM	DNN Inference	Trajectory

AI CO-PILOT

Adding Value When Humans Choose to Drive

Autonomous driving modes are OFF

Vehicle continues to be aware of its surroundings

Driver facing camera

Driver notification via:

Audio (sounds and language)

Visual (LEDs, icons, text, HUD)

Vibration (steering wheel, seat, seatbelt)

AI CO-PILOT Convenience

Driver Recognition Route Memory Driver Habit Customizations

AI CO-PILOT Communication

Lip Reading Natural Language Understanding Conversational Interaction

AI CO-PILOT Safety

Meaningful Alerts Filter Tracks Where Driver is Looking Notifies on Unseen Situations

PX2: ON WHEELS

HARDWARE

DRIVE PX 2 nicely mounted in the trunk of a car, pre-wired for cameras, and other sensors

Sensors – Your choice or NVIDIA's configuration

SOFTWARE

All of what comes with DRIVE PX2

DRIVE PX + SENSORS CONFIGURED TO GO

With Ford Fusion + DRIVE PX + cameras, LIDAR, radar, navigation sensors and storage options

Photo courtesy of AutonomouStuff

DRIVE PLATFORM

For Production

ZF Pro AI — built on DRIVE PX 2 Auto Cruise Bosch — building on DRIVE PX using Xavier Xavier: 30 DL TOPS + ASIL-C for Level 4

Common APIs across CUDA, TensorRT, cuDNN, NvMedia + Support for POSIX APIs

QNX – Common arch across Linux and QNX

GNX

NVIDIA AI CARS

Audi

Volvo

WEpods

RoboRace

SUMMARY

What are autonomous vehicles

Introduced the concept of functional safety

Discussed the levels of automation

AV & Co-Pilot

DRIVE PX

Development workflow

QUESTIONS?

